

Task and Compositional Factors in Individual and Group Problem Solving

Stephen M. Fiore, Ph.D.
University of Central Florida
Cognitive Sciences, Department of Philosophy and
Institute for Simulation & Training

Fiore, S. M. (2013). Task and Compositional Factors in Individual and Group Problem Solving. Invited presentation at Gender Summit 3 - North America: Diversity Fueling Excellence in Research and Innovation (November 14), Washington, DC.

Overview

- Part 1. What Do We Mean by Teams?
 - Background on Teams and Teamwork
- Part 2. Experiments on Task and Compositional Factors
 - 2.1. Attitudinal and Cognitive Factors (Trust and Confidence in Expertise)
 - 2.2. Behavioral and Cognitive Factors (Information Sharing and Information Search)
 - 2.3. Behavioral and Cognitive Factors (Interpersonal Processes and Group IQ)
- Part 3. Steps for Roadmaps
 - 3.1. Steps for Implementation Roadmap
 - 3.2. Steps for Research Roadmap

1. What do we mean by "teams" Cognition of the Background on Teams and Teamwork

- Characteristics of Teams
 - Multiple <u>information sources</u> and intensive <u>communication</u>
 - <u>Task-relevant knowledge</u> with meaningful task <u>interdependencies</u>
 - Affective and attitudinal factors influence group dynamics
 - Coordination among members with <u>specialized roles</u>
- Teamwork inside and outside of STEM
 - Both bring people together to achieve objective(s) that an individual could not achieve and do so while maintaining partially overlapping knowledge

1. What do we mean by "teams" Cognition of the Background on Teams and Teamwork

Overview

- Part 1. What Do We Mean by Teams?
 - Background on Teams and Teamwork
- Part 2. Experiments on Task and Compositional Factors
 - 2.1. Attitudinal and Cognitive Factors (Trust and Confidence in Expertise)
 - 2.2. Behavioral and Cognitive Factors (Information Sharing and Information Search)
 - 2.3. Behavioral and Cognitive Factors (Interpersonal Processes and Group IQ)
- Part 3. Steps for Roadmaps
 - 3.1. Steps for Implementation Roadmap
 - 3.2. Steps for Research Roadmap

Part 2. Task / Compositional Factors 2.1. Attitudinal and Cognitive Factors

Melissa Thomas-Hunt and Katherine W. Phillips (2004). When what you know is not enough: Expertise and gender dynamics in task groups. *Personality and Social Psychology Bulletin*, 30(12), 1585-1598.

- Group Problem Solving Challenge: Identification of Expertise
 - Expertise often difficult to identify in organizational groups
 - Problem when working on intellectual tasks where solution is not demonstrable
 - Sharing expert knowledge difficult (Wittenbaum et al., 1999)
 - Often entails expressing <u>dissenting perspectives</u> in the group
 - May require others to <u>abandon their initial ideas</u>
 - Gender Challenge: Trust and Confidence in "male-typed task"
 - Problem of <u>pre-conceived performance expectations</u>
 - Both male and female group members often hold <u>lower</u>
 <u>performance expectations for women</u> (Meeker & Weitzel-O'Neil, 1977)
 - <u>Female leaders</u> often receive <u>lower performance evaluations</u> even when controlling for style (Eagly et al. 1992).

Part 2. Task / Compositional Factors 2.1. Attitudinal and Cognitive Factors

Melissa Thomas-Hunt and Katherine W. Phillips (2004). When what you know is not enough: Expertise and gender dynamics in task groups. *Personality and Social Psychology Bulletin*, 30(12), 1585-1598.

- Results: Expertise and Gender Dynamics
 - Groups <u>less able</u> to harness the <u>knowledge possessed by female experts</u>
 - Women perceived as less expert, were less influential, and felt less confident about impact on group.
 - Possession of expert knowledge more beneficial for men than for women.
- STEM Roadmap Implications: <u>Self-fulfilling Prophecies</u>
 - Men and women assess women's contributions in ways consistent with previously held <u>gender expectations</u>.
 - Divergence of expert opinions <u>negatively affects the</u> <u>confidence of female experts</u>
 - <u>Diminished confidence</u> of female experts may lead them to censor their contributions
 - Attenuation in contribution may cause them to be labeled as less knowledgeable, diminishing ability to influence group

Part 2. Task / Compositional Factors 2.2. Behavioral and Cognitive Factors

Petru Lucian Curşeu. (2011). Need for cognition and active information search in small student groups, Learning and Individual Differences, 21(4), 415-418.

- Group Problem Solving Challenge: <u>Information Sharing and Information Search</u>
 - Groups do not often discuss <u>unique information</u> (DeChurch & Mesmer-Magnus, 2009)
 - Dynamics suggest that groups prefer to <u>discuss what they have in common</u>
 - Groups do <u>not always actively seek out information</u> (Curşeu et al., 2010)
 - Often prefer solution generation over task exploration (Fiore & Schooler, 2004)
 - May require others to <u>abandon their initial ideas</u>
 - Need for Cognition (NFC) is an idiosyncratic predisposition to engage in search
- Gender Challenge: Information Sharing/Search May
 Require Crossing Social Boundaries
 - Mixed gender groups more likely to <u>hold unique</u> <u>information</u>
 - <u>Clique</u> formation may <u>inhibit search</u> and sharing

Part 2. Task / Compositional Factors 2.2. Behavioral and Cognitive Factors

- Results: Individual Differences in Groups and Information Search –
 NFC as Moderator
 - Group members with <u>high NFC seek more</u> advice in task related issues
 - <u>Pattern</u> of information exchange <u>stronger for different gender</u>
 <u>social interaction</u>
- STEM Roadmap Implications: <u>Attend to both Intra- and Inter-individual differences</u>
 - People high in NFC actively search for information to a higher extent
 - Results particularly strong for cross gender social interactions
 - People scoring high on NFC better able to <u>bridge the gender barrier</u> that often blocks communication in small groups.
 - Group members who <u>actively search for information by crossing social group</u> boundaries may play the role of <u>information integrators within groups</u>

Part 2. Task / Compositional Factors 2.3. Behavioral and Cognitive Factors

Anita Williams Woolley, Christopher F. Chabris, Alexander Pentland, Nada Hashmi, and Thomas W. Malone. (2010). Evidence for a Collective Intelligence Factor in the Performance of Human Groups. *Science*, 330(6004), 686-688.

- Group Problem Solving Challenge: <u>Effects of IQ on Group</u>
 <u>Performance</u>
 - Teams increasingly contributing to production of knowledge (Wuchty et al., 2007)
 - Can a measure of <u>group level IQ</u> help diagnose performance differences
- Gender Challenge: Group Process as Related to Gender Composition of Teams
 - <u>Cooperative behavior</u> (constructive group process) <u>more</u> <u>prevalent in females</u>
 - Interpersonal communication enhanced in females

Part 2. Task / Compositional Factors 2.3. Behavioral and Cognitive Factors

Anita Williams Woolley, Christopher F. Chabris, Alexander Pentland, Nada Hashmi, and Thomas W. Malone. (2010). Evidence for a Collective Intelligence Factor in the Performance of Human Groups. *Science*, 330(6004), 686-688.

- Results: Collective IQ and Gender
 - Teams that had members with <u>higher IQs didn't earn much higher scores</u>
 - Proportion of women in a group is strongly related to the collective intelligence
 - Results related to <u>higher levels of social sensitivity</u> exhibited by women (ability to read nonverbal cues and make accurate inferences about what others are feeling or thinking)
 - Results also related to greater <u>equality in conversational turn-taking</u>
- STEM Roadmap Implications: <u>Importance of</u> <u>Interpersonal Processes</u> (Teamwork Skills)
 - Groups need to be trained to be responsive to one another
 - Groups need to be <u>trained in cooperative</u> <u>behavior</u> to make best use of member knowledge and skills

Overview

- Part 1. What Do We Mean by Teams?
 - Background on Teams and Teamwork
- Part 2. Experiments on Task and Compositional Factors
 - 2.1. Attitudinal and Cognitive Factors (Trust and Confidence in Expertise)
 - 2.2. Behavioral and Cognitive Factors (Information Sharing and Information Search)
 - 2.3. Behavioral and Cognitive Factors (Interpersonal Processes and Group IQ)
- Part 3. Steps for Roadmaps
 - 3.1. Steps for Implementation Roadmap
 - 3.2. Steps for Research Roadmap

Part 3. Steps for Roadmaps 3.1. Steps for Implementation Roadmap

Need for Replications and Extensions

- Findings on <u>group composition</u> and <u>performance equivocal</u>
 - Bear, J. B. & Woolley, A. W. (2011). The role of gender in team collaboration and performance. Interdisciplinary Science Reviews, 36(2), 146-153.
 - Meta-analyses show no effects or slightly negative effects for gender heterogeneity.
 - Effects of gender diversity on team performance might depend upon moderators like <u>task</u> <u>difficulty</u> (Bowers et al. 2000), <u>team type</u> (Stewart 2006), <u>faultlines</u> (Lau and Murnighan 1998; Pearsall et al. 2008), and <u>demographic diversity</u> (Pelled et al. 1999).
 - Context Effects
 - In <u>male-dominated professions</u>, where women in minority, <u>gender diversity</u> is likely to have more <u>negative effects</u>.
 - Critical to understanding gender diversity in STEM
- Generalizability for international populations
 - Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world?
 Behavioral and Brain Sciences, 33(2-3), 61-83
 - Majority of <u>behavioral science</u> based upon non-representative sample of global population (Western, Educated, Industrialized, Rich, and Democratic aka "WEIRD").
 - Cross-cultural research finds that <u>WEIRD subjects are outliers</u> on variety of factors from basic perception to fairness and cooperation.

Part 3. Steps for Roadmaps 3.1. Steps for Research Roadmap

- Theoretical Model of Collaborative Problem Solving
 - Multi-level in that it encompasses individual and team level factors
 - Addresses <u>internalized</u> and <u>externalized</u> cognitive functions
 - Incorporates <u>temporal</u>

 <u>characteristics</u> to examine problem solving phases through which group moves

Fiore, S. M., Rosen, M. A., Smith-Jentsch, K. A., Salas, E., Letsky, M. & Warner, N. (2010). Toward an Understanding of Macrocognition in Teams: Predicting Processes in Complex Collaborative Contexts. *Human Factors*, 52, 2, 203-224.

9th Annual INGRoup Conference Renaissance Raleigh North Hills Hotel Raleigh, NC - July 17-19, 2014

www.ingroup.net

Scholars who study groups and teams are scattered across many disciplines. INGRoup addresses this to:

- a) promote communication about group research across fields and nations
- b) advance understanding about group dynamics through research
- c) advance theory and methods for understanding groups, and
- d) promote interdisciplinary research