Building Bridges:

Interdisciplinary communities of practice for gender responsive agricultural research

Hale Ann Tufan
Gender Summit Africa
28-30th April 2015
Gender Rhetoric……..to Practical Action?

“Effective ways of linking domain expertise in different STEM fields with relevant gender expertise to tackle more effectively specific gaps in scientific understanding of gender issues in key areas (e.g. food security)”

Case studies:
① Meeting level: “Integrating end-user preferences into RTB breeding programs” workshop
② Project level: “Gender-Responsive Researchers Equipped for Agricultural Transformation” concept development
Two ends of a spectrum?

“How researchers choose their methods demonstrates a commitment to a version of the world and how the researcher can come to know that world.”

Moon and Blackman, 2014
1.0 ONTOLOGY: What exists in the human world that we can acquire knowledge about?

- **Realism**: one reality exists
- **Relativism**: multiple realities exist

1.1 Naïve realism
Reality can be understood using appropriate methods

1.2 Structural realism
Reality is described by scientific theory, but its underlying nature remains uncertain

1.3 Critical realism
Reality captured by broad critical examination

1.4 Bounded relativism
Mental constructions of reality are equal in space & time within boundaries (e.g., cultural, moral, cognitive)

1.5 Relativism
Realities exist as multiple, intangible mental constructions; no reality beyond subjects

2.0 EPISTEMOLOGY: How do we create knowledge?

- **Objectivism**
  Meaning exists within an object: an objective reality exists in an object independent of the subject

- **Constructionism**
  Meaning created from interplay between the subject & object: subject constructs reality of object

- **Subjectivism**
  Meaning exists within the subject: subject imposes meaning on an object

Moon and Blackman, 2014
3.0 THEORETICAL PERSPECTIVE: What is the philosophical orientation of the researcher that guides their action/research?

Knowledge acquisition is deductive, 'value-free', generalizable

\[ \text{Knowledge acquisition is inductive, value-laden, contextually unique} \]

Application: to predict

3.1 Positivism
Natural science methods (post, observe, derive logical truths) can be applied to the social sciences

3.2 Post-positivism
Multiple methods are necessary to identify a valid belief because all methods are imperfect

3.3 Structuralism
The source of meaning comes from the formal structure found in language & can apply to all aspects of human culture

Application: to understand

3.4 (Social) Constructivism
Meaning making of reality is an activity of the individual mind

3.5 Interpretivism
Natural science methods cannot apply to social science; interpretations of reality are culturally derived & historically situated

3.5a Hermeneutics
Hidden meaning (of language) exists in texts, practices, events & situations, beneath apparent ones

3.5b Phenomenology
The essence of human experience of phenomena is only understood when the researcher separates their own experiences

3.5c Symbolic interactionism
The researcher must take the position of those researched (interaction) by sharing language & other tools (symbols)

Application: to emancipate or liberate

3.6 Critical theory
Research & theory should be used to change situations (focuses on power relations, critiques assumptions & evolves)

3.6a Emancipatory
The subjects of social inquiry should be empowered

3.6b Advocacy or participatory
Politics & political agendas should be accounted for

3.6c Feminism
The world is patriarchal & the culture it inherits is masculine

Application: to deconstruct

3.7 Post-structuralism
Different languages & discourses divide the world & give it meaning

3.8 Post-modernism
Truth claims are socially constructed to serve interests of particular groups, methods are equally distrusted; might not be possible to arrive at any conclusive definition of reality

Application: any or all

3.9 Pragmatism
All necessary approaches should be used to understand research problem

Moon and Blackman, 2014
Meeting Level: Meeting facilitation

Workshop: “Integrating End User Preferences in RTB Breeding Programs”

- Bring together three domains of expertise—social scientist (gender experts and ag economists), food scientists and plant breeders
- Present evidence/viewpoint from each group
- Brainstorm to translate knowledge and bridge silos
- Construct roadmap of cross-disciplinary holistic solution to issue
† Meeting Level: Setting the scene

Case Study:
A team of researchers just received funding to develop a novel purple-fleshed yam variety. The donors required that the variety meet specific demands of young women who earn a living making purple-pounded yam in Ghana.

How would you consult the end users to understand their preferences?

Divergence: Social scientists focused on qualitative and open-ended methods. Biophysical scientists focus on “traits” and data collection.

Convergence: all suggested looking at value chain, socioeconomic context, getting intended users preferences and perceived benefits. Focus on women.
① Meeting Level: Seeing is believing
Meeting Level: Results

- High level technical presentations from all disciplines
- Conclude with “Bridging” presentations
- Build shared process framework: group inputs gaps and opportunities

End with interdisciplinary groups working on each step
Project Level: GREAT

Gender-responsive Researchers Equipped for Agricultural Transformation (GREAT)

Cornell - Makerere Certificate Program

Agricultural researchers equipped practical skills and tools to shift from “gender rhetoric” to tangible change on the ground.
② Project Level: Visioning

- Bring together diverse disciplines:
  - gender experts specializing in agriculture,
  - biophysical scientists from crop production, animal science, food science, nutrition, ag. economics and natural resources
- Build interdisciplinary teams that appreciate one another’s ontologies, epistemologies, and theoretical perspectives!
② Project Level: Visioning

- Important elements 1: Listening and history
② Project Level: Visioning

- Important elements 2: Share experiences
② Project Level: Visioning

• Important elements 3: Leadership buy-in
② Project Level: Visioning

- Important elements 4: Build consensus and agreement around key concepts and actions

Birth of the GREAT idea!
GREAT Idea: Vision

GREAT equips a “critical mass” of agricultural researchers with tools and skills to shift from gender rhetoric to evidence-based gender responsiveness in their field, while capably engaging for transformative change in institutions and national policies.

In the long term:

• Contribute to gender-responsiveness becoming “the norm” in agricultural research design, implementation, and measurement of success.
• Gender training becomes part of agricultural education curricula
• Participant countries develop and implement policies for equitable agricultural development.
• Women smallholder farmers and ag. entrepreneurs across SSA gain substantially from gender-responsive agricultural technologies, interventions, and policies.
GREAT Idea: Scope and Learning Outcomes

**Research design phase**
- Situational analyses
- Design recognizing impacts on women and men, and relationships
- Identify problems and/or opportunities
- Choose and use frameworks and tools for sex-disaggregated data.

**Research implementation phase**
- Develop budgets to include gender analysis
- Learn when to ask for help and draft TORs for gender experts
- Analyze, interpret, report and learn from sex-disaggregated data

**Research evaluation and communication phase**
- Gender-responsive M&E indicators track changes and measure outcomes
- Provide gender-responsive feedback to communities
- Communicate and capably present evidence to different audiences, including policy makers.
GREAT Idea: Structure

- “Blended” model, focused on application

- Tailored to “Themes”:
  - crop improvement
  - nutrition
  - food science
  - natural resource management and climate change
  - animal science
  - extension education
  - markets with a focus on SMEs

Module 1
- Formulating gender research question
- Gender theory, mutual learning, framing
- Methodology appropriate tools

Data collection
- Reflection and data collection at home institutions with e-support and mentoring

Module 2
- Social differentiation and gender analysis
- Community feedback, drafting gender expert TOR
- Communication and advocacy

Post-certificate support
- Community of Practice through Resource Hub
- “Putting evidence to work” country events
GREAT Idea: E-learning and Support

- Designed by Cornell Academic Technologies Unit
- Searchable using multiple Boolean queries, and systematically catalogued for easy navigation, including short descriptions and keywords.
- Home to community of practice of gender in agricultural research
GREAT Idea: Strengthening Institutions

• Train “institutional teams” of multiple individuals from one institution to work as a team during the course, and compete for seed grants

• Team members represent junior and senior researchers, women and men, and include gender focal points where available

• Partner with AWARD to offer **Leadership Program for Agricultural Research & Development with a gender focus** to participants’ leadership

• Support “putting evidence to work” **in-country follow-up events** to promote and communicate the need for increased institutional, national, and regional gender-responsiveness to policy makers
GREAT Idea: Next Steps

Pilot GREAT course focused on cassava value chains in Uganda:

Week of 27\textsuperscript{th} July 2015

- Curriculum design in progress
- Sponsored participants welcome!
- Location: Makerere University
- Second week expected November 2015
Conclusions

• Building bridges between STEM fields and gender expertise starts with mutual understanding and sharing experiences

• Developing a shared vision brings the “two ends of the spectrum” together: we are all working to benefit people!

• Address concerns and viewpoints of all disciplines in action plan and design to secure commitment and agency

• Convincing a community is powerful but to transform the system need leadership to buy-in and drive the change
THANK YOU!

Blog.foreignpolicy.com
Project Level: Visioning convening outcomes

- Biophysical scientists see the links between research and human use, and shift behavior to prioritize outcomes serving this link.

- Build interdisciplinary teams that understand one another and commit to action together—move beyond rhetoric

- Consensus terminology, vision and expected outputs

- Leadership buy-in to help advance the idea

The Birth of a GREAT idea!